
Chapter 12

Dealing with a Bunch of Things
at a Time

In This Chapter
▶	Dealing with many objects at a time
▶	Creating versatile classes and methods
▶	Stepping through a list of items

All the world’s a class,

And all the data, merely objects.

—Jimmy Shakespeare, 11-year-old computer geek

A
 class is a blueprint for things, and an object is a thing made from
the blueprint. By thing, I mean a particular employee, a customer, an

Android activity, or a more ethereal element, such as an SQLiteOpenHelper.
Here’s another quotation, this one from a more reliable source:

In fact, some Java classes are difficult to visualize. Android’s
SQLiteOpenHelper class assists developers in the creation of databases.
An SQLiteOpenHelper doesn’t look like anything in particular, and
certainly not an online form or a bag of cheese.

—Barry Burd, Java Programming for Android Developers
For Dummies, Chapter 9

This chapter covers a concept that you might not normally consider a class
or an object — namely, a bunch of things. I use the word bunch, by the way,
to avoid the formal terminology. (There’s nothing wrong with the formal ter-
minology, but I want to save it for this chapter’s official grand opening, in the
first section.)

326 Part IV: Powering Android with Java Code

Creating a Collection Class
A collection class is a class whose job is to store a bunch of objects at a
time — a bunch of String objects, a bunch of BagOfCheese objects, a
bunch of tweets, or whatever. You can create a collection class with the
code in Listing 12-1.

Listing 12-1:   Your First Collection Class
package com.allmycode.collections;

import java.util.ArrayList;

public class SimpleCollectionsDemo {

 public static void main(String[] args) {
 ArrayList arrayList = new ArrayList();
 arrayList.add(“Hello”);
 arrayList.add(“, “);
 arrayList.add(“readers”);
 arrayList.add(“!”);

 for (int i = 0; i < 4; i++) {
 System.out.print(arrayList.get(i));
 }
 }

}

When you run the code in Listing 12-1, you see the output shown in Figure 12-1.

	

Figure 12-1:
Running

the code in
Listing 12-1.

	

The code in Listing 12-1 constructs a new ArrayList instance and makes
the arrayList variable refer to that new instance. The ArrayList class is
one of many kinds of collection classes.

	 The statement ArrayList arrayList = new ArrayList() creates an
empty list of things and makes the arrayList variable refer to that empty list.
What does a list look like when it’s empty? I don’t know. I guess it looks like a
blank sheet of paper. Anyway, the difference between having an empty list and

327 Chapter 12: Dealing with a Bunch of Things at a Time

having no list is important. Before executing ArrayList arrayList = new
ArrayList(), you have no list. After executing ArrayList arrayList =
new ArrayList(), you have a list that happens to be empty.

The code in Listing 12-1 calls arrayList.add four times in order to put
these four objects (all strings) into the list:

	 ✓	“Hello”

	 ✓	“, “

	 ✓	“readers”

	 ✓	“!”

After calling arrayList.add, the list is no longer empty.

To display the objects in Eclipse’s Console view, the code calls System.
out.print four times, each time with a different object from the arrayList
collection.

	 If you don’t see Eclipse’s Console view, click Window➪Show View➪Console.

	 There’s a difference between System.out.println and System.out.
print (without the ln ending): The System.out.println method goes to
a new line after displaying its text; the System.out.print method does not
go to a new line after displaying its text. In Listing 12-1, for example, with four
calls to System.out.print, all four chunks of text appear on the same line
in Eclipse’s Console view.

The for statement in Listing 12-1 marches through the values in the array-
List. Every value in the list has an index, each ranging from 0 to 3.

	 In a Java collection, the initial index is always 0, not 1.

Java generics
If you look at Listing 12-1 in Eclipse’s editor, you see lots of yellow warning
markers, as shown in Figure 12-2. The warning text looks something like this:
“ArrayList is a raw type. References to generic type ArrayList<E> should be
parameterized.” What does that mean?

Starting with Java 5, the collection classes use generic types. You can recog-
nize a generic type because of the angle brackets around its type name. For
example, the following declaration uses String for a generic type:

ArrayList<String> arrayList = new ArrayList<String>();

328 Part IV: Powering Android with Java Code

	

Figure 12-2:
What are all
these warn-
ings about?

	

This improved declaration tells Java that the arrayList variable refers to a
bunch of objects, each of which is an instance of String. When you substitute
this new declaration in place of the nongeneric declaration from Listing 12-1,
the yellow warning markers disappear, as you can see in Figure 12-3.

	

Figure 12-3:
Using

generics.
	

The yellow markers show warnings, not errors (refer to Figure 12-2), so
you can get away with using the nongeneric declaration in Listing 12-1. But
creating a nongeneric collection has some disadvantages. When you don’t
use generics (as in Listing 12-1), you create a collection that might contain
objects of any kind. In that case, Java can’t take advantage of any special
properties of the items in the collection.

Here’s an example. Chapter 9 starts with a description of the BagOfCheese
class (which I’ve copied in Listing 12-2).

329 Chapter 12: Dealing with a Bunch of Things at a Time

Listing 12-2:   A Class in the Java Programming Language
package com.allmycode.andy;

public class BagOfCheese {
 String kind;
 double weight;
 int daysAged;
 boolean isDomestic;
}

You can put a few BagOfCheese objects into a nongeneric collection. But
when you examine the objects in the collection, Java remembers only that
the items in the collection are objects. Java doesn’t remember that they’re
BagOfCheese objects, as shown in Figure 12-4.

	

Figure 12-4:
Your code

without
casting.

	

In Figure 12-4, Java doesn’t remember that what you get from arrayList is
always a BagOfCheese instance. So Java refuses to reference the object’s
kind field. (The last marker in Figure 12-4 is an error marker. Java can’t run
the code in that figure.)

Using casting, you can remind Java that the item you’re getting from array-
List is a BagOfCheese instance.

System.out.print(((BagOfCheese) arrayList.get(i)).kind);

When you cast arrayList.get(i) to a BagOfCheese instance, you don’t
see the error message in Figure 12-4. You can run the code, warnings and
all. Life is good, but the code is ugly! Look at all the parentheses you need in
order to make the casting work correctly. It’s a mess.

330 Part IV: Powering Android with Java Code

If you tweak the code to make arrayList generic, Java knows that what
you get from arrayList is always a BagOfCheese instance, and every
BagOfCheese instance has a kind field, as shown in Figure 12-5. No casting
is required.

	

Figure 12-5:
Java gener-

ics save
the day.

	

You can use generics to create your own collection class. When you do,
the generic type serves as a placeholder for an otherwise unknown type.
Listing 12-3 contains a home-grown declaration of an OrderedPair class.

Listing 12-3:   A Custom-Made Collection Class
package com.allmycode.collections;

public class OrderedPair<T> {
 private T x;
 private T y;

 public T getX() {
 return x;
 }
 public void setX(T x) {
 this.x = x;
 }
 public T getY() {
 return y;
 }
 public void setY(T y) {
 this.y = y;
 }
}

331 Chapter 12: Dealing with a Bunch of Things at a Time

An OrderedPair object has two components: an x component and a y
component. If you remember your high school math, you can probably plot
ordered pairs of numbers on a two-dimensional grid. But who says that every
ordered pair must contain numbers? The newly declared OrderedPair class
stores objects of type T, and T can stand for any Java class. In Listing 12-4, I
show you how to create an ordered pair of BagOfCheese objects.

Listing 12-4:   Using the Custom-Made Collection Class
package com.allmycode.collections;

public class PairOfBags {

 public static void main(String[] args) {
 OrderedPair<BagOfCheese> pair =
 new OrderedPair<BagOfCheese>();

 BagOfCheese bag = new BagOfCheese();
 bag.kind = “Muenster”;
 pair.setX(bag);

 bag = new BagOfCheese();
 bag.kind = “Brie”;
 pair.setY(bag);

 System.out.println(pair.getX().kind);
 System.out.println(pair.getY().kind);
 }

}

Java’s wrapper classes
Chapters 6 and 9 describe the difference between primitive types and refer-
ence types:

	 ✓	Each primitive type is baked into the language.

		 Java has eight primitive types.

	 ✓	Each reference type is a class or an interface.

		 You can define your own reference type. So the number of reference
types in Java is potentially endless.

332 Part IV: Powering Android with Java Code

The difference between primitive types and reference types is one of Java’s
most controversial features, and developers often complain about the differ-
ences between primitive values and reference values.

Here’s one of the primitive-versus-reference-type “gotchas:” You can’t store a
primitive value in an ArrayList. You can write

// THIS IS OKAY:
ArrayList<String> arrayList = new ArrayList<String>();

because String is a reference type. But you can’t write

// DON’T DO THIS:
ArrayList<int> arrayList = new ArrayList<int>();

because int is a primitive type. Fortunately, each of Java’s primitive types
has a wrapper type, which is a reference type whose purpose is to contain
another type’s value. For example, an object of Java’s Integer type contains
a single int value. An object of Java’s Double type contains a single double
value. An object of Java’s Character type contains a single char value. You
can’t create an ArrayList of int values, but you can create an ArrayList
of Integer values.

// THIS IS OKAY:
ArrayList<Integer> arrayList = new ArrayList<Integer>();

	 Every primitive type’s name begins with a lowercase letter. Every wrapper
type’s name begins with an uppercase letter.

In addition to containing primitive values, wrapper classes provide useful
methods for working with primitive values. For example, the Integer wrap-
per class contains parseInt and other useful methods for working with int
values:

String string = “17”;
int number = Integer.parseInt(string);

On the downside, working with wrapper types can be clumsy. For example,
you can’t use arithmetic operators with Java’s numeric wrapper types. Here’s
the way I usually create two Integer values and add them together:

Integer myInteger = new Integer(3);
Integer myOtherInteger = new Integer(15);

Integer sum =
 myInteger.intValue() + myOtherInteger.intValue();

333 Chapter 12: Dealing with a Bunch of Things at a Time

Stepping through a collection
The program in Listing 12-1 uses a for loop with indexes to step through a col-
lection. The code does what it’s supposed to do, but it’s a bit awkward. When
you’re piling objects into a collection, you shouldn’t have to worry about which
object is first in the collection, which is second, and which is third, for example.

Java has two features that make it easier to step through a collection of
objects. One feature is the iterator. Listing 12-5 shows you how an iterator
works.

Listing 12-5:   Iterating through a Collection
package com.allmycode.collections;

import java.util.ArrayList;
import java.util.Iterator;

public class SimpleCollectionsDemo {

 public static void main(String[] args) {
 ArrayList<String> arrayList = new ArrayList<String>();
 arrayList.add(“Hello”);
 arrayList.add(“, “);
 arrayList.add(“readers”);
 arrayList.add(“!”);

 Iterator<String> iterator = arrayList.iterator();
 while (iterator.hasNext()) {
 System.out.print(iterator.next());
 }
 }

}

The output from running Listing 12-5 is shown earlier, in Figure 12-1.

When you have a collection (such as an ArrayList), you can create an itera-
tor to go along with that collection. In Listing 12-5, I show you how to create
an iterator to go along with the arrayList collection, by calling

 Iterator<String> iterator = arrayList.iterator();

After you’ve made this call, the variable iterator refers to something that
can step through all values in the arrayList collection. Then, to step
from one value to the next, you call iterator.next() repeatedly. And,

334 Part IV: Powering Android with Java Code

to find out whether another iterator.next() call will yield results, you
call iterator.hasNext(). The call to iterator.hasNext() returns
a boolean value: true when there are more values in the collection and
false when you’ve already stepped through all the values in the collection.

An even nicer way to step through a collection is with Java’s enhanced for
statement. Listing 12-6 shows you how to use it.

Listing 12-6:   Using the Enhanced for Statement
package com.allmycode.collections;

import java.util.ArrayList;

public class SimpleCollectionsDemo {

 public static void main(String[] args) {
 ArrayList<String> arrayList = new ArrayList<String>();
 arrayList.add(“Hello”);
 arrayList.add(“, “);
 arrayList.add(“readers”);
 arrayList.add(“!”);

 for (String string : arrayList) {
 System.out.print(string);
 }
 }

}

An enhanced for statement doesn’t have a counter. Instead, the statement
has the format shown in Figure 12-6.

	

Figure 12-6:
The anat-
omy of an
enhanced

for
statement.

	

335 Chapter 12: Dealing with a Bunch of Things at a Time

The enhanced for statement in Listing 12-6 achieves the same effect as the
iterator in Listing 12-5 and the ordinary for statement in Listing 12-1. That is,
the enhanced for statement steps through the values stored in the array
List collection.

The enhanced for statement was introduced in Java 5.0. It’s “enhanced”
because, for stepping through a collection, it’s easier to use than a pre-Java
5.0 for statement.

A cautionary tale
In an enhanced for statement, the variable that repeatedly stands for dif-
ferent values in the collection never refers directly to any of those values.
Instead, this variable always contains a copy of the value in the collection.
So, if you assign a value to that variable, you don’t change any values inside
the collection.

Here’s a quiz. (Don’t be scared. The quiz isn’t graded.) What’s the output of
the following code?

package com.allmycode.collections;

import java.util.ArrayList;

public class SimpleCollectionsDemo {

 public static void main(String[] args) {
 ArrayList<String> arrayList = new ArrayList<String>();
 arrayList.add(“Hello”);
 arrayList.add(“, “);
 arrayList.add(“readers”);
 arrayList.add(“!”);

 // THIS IS PRETTY BAD CODE
 for (String string : arrayList) {
 string = “Oops!”;
 System.out.print(string);
 }

 System.out.println();

 for (String string : arrayList) {
 System.out.print(string);
 }
 }

}

The output is shown in Figure 12-7.

336 Part IV: Powering Android with Java Code

	

Figure 12-7:
Running this

section’s
bad code.

	

In the first for statement, the variable string is reassigned to refer to the
word “Oops!” each time through the loop. The call to System.out.print
displays that word “Oops!”. So far, so good.

But in the second for statement, the variable string isn’t reassigned.
Instead, the string variable retains whatever value it copies from the
arrayList collection. So the second for statement displays the words
Hello, readers!.

Java’s many collection classes
The ArrayList class that I use in many of this chapter’s examples is only
the tip of the Java collections iceberg. The Java library contains many collec-
tions classes, each with its own advantages. Table 12-1 contains an abbrevi-
ated list.

Table 12-1	 Some Collection Classes
Class Name Characteristic
ArrayList A resizable array.
LinkedList A list of values, each having a field that points to the next

one in the list.
Stack A structure (which grows from bottom to top) that’s opti-

mized for access to the topmost value. You can easily add
a value to the top or remove it from the top.

Queue A structure (which grows at one end) that’s optimized for
adding values to one end (the rear) and removing values
from the other end (the front).

PriorityQueue A structure, like a queue, that lets certain (higher-priority)
values move toward the front.

HashSet A collection containing no duplicate values.
HashMap A collection of key/value pairs.

337 Chapter 12: Dealing with a Bunch of Things at a Time

Each collection class has its own set of methods (in addition to the methods that
it inherits from AbstractCollection, the ancestor of all collection classes).

	 To find out which collection classes best meet your needs, visit the Android API
documentation pages at http://developer.android.com/reference.

Arrays
In the “Stepping through a collection” section, earlier in this chapter, I cast
aspersions on the use of an index in Listing 12-1. “You shouldn’t have to
worry about which object is first in the collection, which is second, and
which is third,” I write. Well, that’s my story and I’m sticking to it, except in
the case of an array. An array is a particular kind of collection that’s opti-
mized for indexing. That is, you can easily and efficiently find the 100th value
stored in an array, the 1,000th value stored in an array, or the 1,000,000th
value stored in an array.

The array is a venerable, tried-and-true feature of many programming lan-
guages, including newer languages such as Java and older languages such as
FORTRAN. In fact, the array’s history goes back so far that most languages
(including Java) have special notation for dealing with arrays. Listing 12-7
illustrates the notation for arrays in a simple Java program.

Listing 12-7:   Creating and Using an Array
package com.allmycode.collections;

public class SimpleCollectionsDemo {

 public static void main(String[] args) {
 String[] myArray = new String[4];
 myArray[0] = “Hello”;
 myArray[1] = “, “;
 myArray[2] = “readers”;
 myArray[3] = “!”;

 for(int i = 0; i < 4; i++) {
 System.out.print(myArray[i]);
 }

 System.out.println();

 for (String string : myArray) {
 System.out.print(string);
 }
 }

}

http://developer.android.com/reference

338 Part IV: Powering Android with Java Code

Figure 12-8 shows the output of a run of the code in Listing 12-7. Both the
ordinary for loop and the enhanced for loop display the same output.

	

Figure 12-8:
Running

the code in
Listing 12-7.

	

In Listing 12-7, the ordinary for loop uses indexes, with each index marked
by square brackets. As it is with all Java collections, the initial value’s index
is 0, not 1. Notice also the number 4 in the array’s declaration — it indicates
that “you can store 4 values in the array.” The number 4 doesn’t indicate that
“you can assign a value to myArray[4].” In fact, if you add a statement such
as myArray[4] = “Oops!” to the code in Listing 12-7, you get a nasty error
message (ArrayIndexOutOfBoundsException) when you run the program.

	 The statement String[] myArray = new String[4] creates an empty
array and makes the myArray variable refer to that empty array. The array can
potentially store as many as four values. But, initially, that variable refers to an
array that contains no values. It’s not until Java executes the first assignment
statement (myArray[0] = “Hello”) that the array contains any values.

You can easily and efficiently find the 100th value stored in an array or the
1,000,000th value stored in an array. Not bad for a day’s work. So, what’s the
downside of using an array? The biggest disadvantage of an array is that each
array has a fixed limit on the number of values it can hold. When you create
the array in Listing 12-7, Java reserves space for as many as four String
values. If, later in the program, you decide that you want to store a fifth ele-
ment in the array, you need some clumsy, inefficient code to make yourself
a larger array. You can also overestimate the size you need for an array, as
shown in this example:

 String[] myArray = new String[20000000];

When you overestimate, you probably waste a lot of memory space.

Another unpleasant feature of an array is the difficulty you can have in insert-
ing new values. Imagine having a wooden box for each year in your collection
of Emperor Constantine Comics. The series dates back to the year 307 A.D.,
when Constantine became head of the Roman Empire. You have only 1,700
boxes because you’re missing about six years (mostly from the years 1150 to
1155). The boxes aren’t numbered, but they’re stacked one next to another
in a line that’s 200 meters long. (The line is as long as the 55th floor of a sky-
scraper is tall.)

339 Chapter 12: Dealing with a Bunch of Things at a Time

At a garage sale in Istanbul, you find a rare edition of Emperor Constantine
Comics from March 1152. After rejoicing over your first comic from the year
1152, you realize that you have to insert a new box into the pile between the
years 1151 and 1153, which involves moving the year 2013 box about ten cen-
timeters to the left, and then moving the 2012 box in place of the 2013 box,
and then moving the 2011 box in place of the 2012 box. And so on. Life for
the avid Emperor Constantine Comics collector is about to become tiresome!
Inserting a value into the middle of a large array is equally annoying.

Java’s varargs
In an app of some kind, you need a method that displays a bunch of words
as a full sentence. How do you create such a method? You can pass a bunch
of words to the sentence. In the method’s body, you display each word, fol-
lowed by a blank space, as shown here:

for (String word : words) {
 System.out.print(word);
 System.out.print(“ “);
}

To pass words to the method, you create an array of String values:

String[] stringsE = { “Goodbye,”, “kids.” };
displayAsSentence(stringsE);

Notice the use of the curly braces in the initialization of stringsE. In Java,
you can initialize any array by writing the array’s values, separating the
values from one another by commas, and surrounding the entire bunch of
values with curly braces. When you do this, you create an array initializer.

Listing 12-8 contains an entire program to combine words into sentences.

Listing 12-8:   A Program without Varargs
package com.allmycode.arrays;

public class UseArrays {

 public static void main(String[] args) {
 String[] stringsA = { “Hello,”, “I”, “must”, “be”,
 “going.” };
 String[] stringsB = { “ “, “-Groucho” };
 String[] stringsC = { “Say”, “Goodnight,”,
 “Gracie.” };

(continued)

340 Part IV: Powering Android with Java Code

Listing 12‑8 (continued)
 String[] stringsD = { “ “, “-Nathan Birnbaum” };
 String[] stringsE = { “Goodbye,”, “kids.” };
 String[] stringsF = { “ “, “-Clarabell” };

 displayAsSentence(stringsA);
 displayAsSentence(stringsB);
 displayAsSentence(stringsC);
 displayAsSentence(stringsD);
 displayAsSentence(stringsE);
 displayAsSentence(stringsF);
 }

 static void displayAsSentence(String[] words) {
 for (String word : words) {
 System.out.print(word);
 System.out.print(“ “);
 }
 System.out.println();
 }
}

When you run the code in Listing 12-8, you see the output shown in Figure 12-9.

	

Figure 12-9:
Running

the code in
Listing 12-8.

	

The code in Listing 12-8 is awkward because you have to declare six different
arrays of String values. You can’t combine the variable declarations and
the method call. A statement such as

displayAsSentence(“Say”, “Goodnight,”, “Gracie.”);

is illegal because the call’s parameter list has three values, and because the
displayAsSentence method (in Listing 12-8) has only one parameter (one
array). You can try fixing the problem by declaring displayAsSentence
with three parameters:

static void displayAsSentence
 (String word0, String word1, String word2) {

341 Chapter 12: Dealing with a Bunch of Things at a Time

But then you’re in trouble when you want to pass five words to the method.

To escape from this mess, Java 5.0 introduces varargs. A parameter list with
varargs has a type name followed by three dots. The dots represent any
number of parameters, all of the same type. Listing 12-9 shows you how it
works.

Listing 12-9:   A Program with Varargs
package com.allmycode.varargs;

public class UseVarargs {

 public static void main(String[] args) {
 displayAsSentence(“Hello,”, “I”, “must”, “be”,
 “going.”);
 displayAsSentence(“ “, “-Groucho”);
 displayAsSentence(“Say”, “Goodnight,”, “Gracie.”);
 displayAsSentence(“ “, “-Nathan Birnbaum”);
 displayAsSentence(“Goodbye,”, “kids.”);
 displayAsSentence(“ “, “-Clarabell”);
 }

 static void displayAsSentence(String... words) {
 for (String word : words) {
 System.out.print(word);
 System.out.print(“ “);
 }
 System.out.println();
 }
}

In Listing 12-9, the parameter list (String... words) stands for any
number of String values — one String value, one hundred String values,
or even no String values. So in Listing 12-9, I can call the displayAsSent-
ence method with two parameters (“Goodbye,”, “kids.”), with three
parameters (“Say”, “Goodnight,”, “Gracie.”), and with five param-
eters (“Hello,”, “I”, “must”, “be”, “going.”).

In the body of the displayAsSentence method, I treat the collection of
parameters as an array. I can step through the parameters with an enhanced
for statement, or I can refer to each parameter with an array index. For
example, in Listing 12-9, during the first call to the displayAsSentence
method, the expression words[0] stands for “Hello”. During the second
call to the displayAsSentence method, the expression words[2] stands
for “Goodnight”. And so on.

342 Part IV: Powering Android with Java Code

Using Collections in an Android App
I conclude this chapter with an Android app that’s all about collections. This
example will never become Google Play’s featured app of the day, but the app
demonstrates some of Java’s collection features, and it shows you how to do
a few interesting Android tricks.

The app begins by displaying five check boxes, as shown in Figure 12-10.

The user selects a few of the check boxes and then clicks the Show the List
button. After the button is clicked, the app switches to a new activity (an
Android ListActivity) that displays the numbers of the check boxes the
user clicked, as shown in Figure 12-11.

In the app’s code, I use an array to store the check boxes, I use an ArrayList
for the items in the ListActivity, and I use an Android ArrayAdapter to
determine which numbers the ListActivity displays.

	

Figure 12-10:
The app’s

main
activity.

	

	

Figure 12-11:
The app’s

other
activity.

	

343 Chapter 12: Dealing with a Bunch of Things at a Time

The main activity’s initial layout
In an Android app, you use layouts to describe the arrangement of widgets on
the device’s screen. The Android API has several kinds of layouts, including
these:

	 ✓	LinearLayout: Arranges widgets in a line across the screen, or in a
column down the screen.

	 ✓	GridLayout: Arranges widgets in a rectangular grid (that is, in the cells
of a table whose borders are invisible).

	 ✓	RelativeLayout: Arranges widgets by describing their positions relative
to one another. For example, you can make the top of button2 be 50
pixels below the bottom of button1.

In a LinearLayout, items appear one to the right of the other, or one
beneath the other, depending on the layout’s orientation. According to the
code in Listing 12-10, the app’s main activity has a LinearLayout with
vertical orientation. So when you add items to the layout, new items appear
beneath existing items on the activity’s screen.

Listing 12-10:   The Main Activity’s Layout
<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=
 “http://schemas.android.com/apk/res/android”
 android:id=”@+id/linearLayout”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:orientation=”vertical” >

 <TextView
 android:id=”@+id/textView1”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/main_activity” >
 </TextView>

 <Button
 android:id=”@+id/button1”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:onClick=”onShowListClick”
 android:text=”@string/show_list” >
 </Button>

</LinearLayout>

344 Part IV: Powering Android with Java Code

As always, you can download this chapter’s Android app from the book’s
website (www.allmycode.com/Java4Android). But if you create the app
from scratch, you can create most of Listing 12-10 by dragging and dropping
items into Eclipse’s graphical layout.

By default, Eclipse doesn’t create an android:id attribute when you drag
a LinearLayout or a RelativeLayout onto the Graphical Layout pane.
But, as you can see in the next section, you need a way to refer back to the
overall layout in this app’s main activity. To create the code in Listing 12-10,
you add your own android:id attribute to the code’s LinearLayout
element, either by right-clicking (in Windows) or Control-clicking (on
the Mac) the layout on the Graphical Layout tab or typing the words
android:id=”@+id/linearLayout” on the activity_main.xml tab.

In this app example, the layout’s TextView element is mere eye candy. The
only interesting widget in Listing 12-10 is the button. When the user clicks the
button, Android calls your main activity’s onShowListClick method.

	 Both standard Oracle Java and Android Java have layouts. But the kinds of lay-
outs that come with standard Java are different from the kinds that come with
Android Java. For example, Android’s LinearLayout is similar to (but not
identical to) standard Java’s FlowLayout. Android’s FrameLayout is some-
thing like two of standard Java’s layouts: CardLayout and OverlayLayout.
Standard Java’s BorderLayout has no direct counterpart in Android. But, in
Android, you can achieve the same effect as a BorderLayout by combining
some of Android’s existing layouts or by creating your own custom layout.

The app’s main activity
In Chapter 5, I introduce the lifecycle of an Android activity. Unlike a stan-
dard Java program, an Android activity has no main method. Instead, the
Android operating system calls the activity’s onCreate, onStart, and
onResume methods.

Listing 12-11 contains the code for the app’s main activity (refer to Figure 12-10).
The MainActivity class in Listing 12-11 has all three lifecycle methods —
onCreate, onStart and onResume, although you see only onCreate in
Listing 12-11. The other two lifecycle methods (onStart and onResume) come
quietly as a result of extending Android’s Activity class.

http://www.allmycode.com/Java4Android

345 Chapter 12: Dealing with a Bunch of Things at a Time

Listing 12-11:   The Main Activity’s Java Code
package com.allmycode.lists;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.CheckBox;
import android.widget.LinearLayout;

public class MainActivity extends Activity {
 static CheckBox[] checkBoxes = new CheckBox[5];

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 LinearLayout layout =
 (LinearLayout) findViewById(R.id.linearLayout);

 for (int i = 0; i < 5; i++) {
 checkBoxes[i] = new CheckBox(this);
 layout.addView(checkBoxes[i]);
 }
 }

 public void onShowListClick(View view) {
 Intent intent =
 new Intent(this, MyListActivity.class);
 startActivity(intent);
 }
}

The onCreate method in Listing 12-11 calls findViewById to locate the
layout on the activity’s screen. After assigning the result to the layout vari-
able, the onCreate method’s for loop adds five check boxes to layout. In
the CheckBox constructor call . . .

Hey, wait a minute! Don’t I have to declare the five check boxes in the
activity_main.xml file of Listing 12-10? Can I really add a widget to
a layout using Java code? Yes, I can. To place a widget (a TextView, a
Button, a CheckBox, or whatever) on the screen, I can either declare
the widget in my activity_main.xml file or (as I do in Listing 12-11)
call the layout’s addView method in my Java code.

Most Android developers agree that the activity_main.xml route
is often the better way to go. After all, the widgets on a screen are just

346 Part IV: Powering Android with Java Code

“there” all at once. They don’t usually appear one by one, as though
someone commands them into existence. But creating check boxes with
Java code is particularly good for this chapter’s sample app, especially
because I want to consider the check boxes as numbered from 0 to 4.

Anyway, in the CheckBox constructor call, the parameter this represents
the app’s main activity. When you create a widget in an Android app, you do
so within a context, which is a pile of information about the environment in
which a widget lives. A context includes facts such as an activity’s package
name, the values in the activity’s strings.xml file, and a list of files associ-
ated with the activity.

Now here’s the strange part: Android’s Activity class is a subclass of
Android’s Context class. In other words. every activity is a context. In the
CheckBox constructor in Listing 12-11, passing this to the constructor
means that I’m passing a context to the constructor. For all the Android code
that I’ve written, I’ve never gotten used to thinking of an activity as a kind of
context. But the android.app.Activity class is a subclass of a subclass of
a subclass of the android.context.Context class. So it’s true. I can pass
my main activity to the CheckBox constructor in Listing 12-11.

The onShowListClick method in Listing 12-11 responds to the click of
the Show the List button in Figure 12-10. In that method’s body, the call to
startActivity(intent) makes a second activity replace the main activ-
ity. The main activity becomes stopped (that is, hidden) and another activity
(an instance of the MyListActivity class) takes over the device’s screen.

Android uses Intent objects to transition from one activity to another. The
Intent object in Listing 12-11 is called an explicit intent because the name of
the new activity’s class (MyListActivity) is in the intent’s constructor.

	 The alternative to an explicit intent is an implicit intent. With an implicit intent,
you don’t provide the new activity’s class name. Instead, you provide infor-
mation about the kinds of things you want the new activity to be able to do.
When you call startActivity with an implicit intent, Android goes search-
ing around the user’s device for any activity (in your app or in other people’s
apps) that can do the kinds of things you want done. For example, with the
intent new Intent(Intent.ACTION_VIEW, “http://www.allmycode.
com”), Android searches for a web browser activity — an activity that can
view this book’s website. Anyway, don’t get me started on Android’s implicit
intents. They can be extremely complicated. (Okay, if you insist, I describe
implicit intents in great detail in my book Android Application Development All-
in-One For Dummies, published by John Wiley & Sons, Inc.)

347 Chapter 12: Dealing with a Bunch of Things at a Time

The app’s List Activity
When the code in Listing 12-11 calls startActivity(intent), an instance
of the MyListActivity takes over the user’s screen. The code for the
MyListActivity class is in Listing 12-12, and the activity’s screen is pic-
tured earlier, in Figure 12-11.

Listing 12-12:   The App’s List Activity
package com.allmycode.lists;

import java.util.ArrayList;

import android.app.ListActivity;
import android.os.Bundle;
import android.widget.ArrayAdapter;

public class MyListActivity extends ListActivity {

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 ArrayList<Integer> listItems =
 new ArrayList<Integer>();
 for (int i = 0; i < 5; i++) {
 if (MainActivity.checkBoxes[i].isChecked()) {
 listItems.add(i);
 }
 }

 setListAdapter(new ArrayAdapter<Integer>(this,
 R.layout.my_list_layout, listItems));
 }
}

Android’s ListActivity class is a subclass of the Activity class. So
the class described in Listing 12-12 is a kind of activity. In particular, a
ListActivity displays one thing after another, each in its own slot. The
screen shown in Figure 12-11 displays three slots.

In a ListActivity, each slot can consist of one row or two rows or as many
rows as the developer sees fit. The number of rows is determined by the
layout of things in yet another XML file. On the screen shown in Figure 12-11,
each slot has only one row.

348 Part IV: Powering Android with Java Code

When you declare a ListActivity, you call Android’s setListAdapter
method. In the call to setListAdapter in Listing 12-12, you have three
parameters:

	 ✓	You provide a context.

		 In Listing 12-12, I provide the familiar this context.

	 ✓	You point to an XML file in your application’s res/layout directory.

		 In Listing 12-12 I point to the my_list_layout.xml file.

	 ✓	You provide a collection of items, each to be displayed in its own slot.

		 In Listing 12-12, I provide listItems, which I declare to be an
ArrayList of Integer values.

With respect to the layout file, Android treats a ListActivity a bit
differently from the way it treats an ordinary Activity. To display
a ListActivity (like the activity in Listing 12-12), Android reuses a
layout XML file over and over again. Android reuses the layout file once
for each of the items being displayed. In other words, the layout file for a
ListActivity doesn’t describe the entire screen. Instead, the layout file for
a ListActivity describes only one of the many slots on the user’s screen.

The my_list_layout.xml file for this chapter’s app is shown in Listing 12-13.
That XML file contains a single text view. So in Figure 12-11, each item in the
list (each number beneath the “Using Collections” title) is in a single text view.
Each slot in the list has a single text view. That’s the way a ListActivity
works.

Listing 12-13:   The R.layout.my_list_layout.xml File
<?xml version=”1.0” encoding=”utf-8”?>
<TextView xmlns:android=
 “http://schemas.android.com/apk/res/android”
 android:id=”@+id/identView”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”>
</TextView>

The items displayed in Figure 12-11 correspond to the selected check boxes
in Figure 12-10. (Remember: When Java numbers the items in a collection,
Java starts with 0.) To get the right numbers in MyListActivity, I fill the
listItems collection in Listing 12-12. A for statement marches through the
main activity’s checkBoxes collection. The for statement adds the number
i to listItems whenever the call to checkBoxes[i].isChecked()
returns true.

349 Chapter 12: Dealing with a Bunch of Things at a Time

For any check box that isn’t selected, the call to checkBoxes[i].is
Checked() returns false. So that i value doesn’t get into the
listItems collection. But for any check box that’s selected, the call to
checkBoxes[i].isChecked() returns true. That i value gets into the
listItems collection and is displayed on the user’s screen.

The app’s AndroidManifest.xml file
When Eclipse creates a new Android project, Eclipse also offers to create a
main activity. If you accept the offer to create a main activity, Eclipse puts
an activity element in the project’s AndroidManifest.xml file. This
happens behind the scenes. So, when you add a second activity to an app
(such as the activity in Listing 12-12) you can easily forget to manually add an
activity element.

Listing 12-14 contains the AndroidManifest.xml file for this chapter’s
Android app:

Listing 12-14:   The AndroidManifest.xml file
<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=
 “http://schemas.android.com/apk/res/android”
 package=“com.allmycode.lists“
 android:versionCode=“1“
 android:versionName=“1.0“ >

 <uses-sdk
 android:minSdkVersion=“8“
 android:targetSdkVersion=“15“ />

 <application
 android:icon=“@drawable/icon“
 android:label=“@string/app_name“ >

 <activity
 android:name=”.MainActivity”
 android:label=”@string/app_name” >
 <intent-filter>
 <action android:name=
 “android.intent.action.MAIN” />
 <category android:name=
 “android.intent.category.LAUNCHER” />
 </intent-filter>

(continued)

350 Part IV: Powering Android with Java Code

Listing 12‑14 (continued)
 </activity>

 <activity android:name=”.MyListActivity” />

 </application>

</manifest>

Notice that the code in Listing 12-14 contains two activity elements.

	 ✓	The first activity element’s android:name attribute has value
.MainActivity.

		 Eclipse creates this first element when you create the Android project,
As the android:name attribute indicates, this element applies to the
app’s MainActivity class. Inside the activity element, the intent-
filter element indicates that this activity’s code can be the starting
point of the app’s execution, and this activity’s icon can appear on the
device’s Apps screen.

	 ✓	The second activity element’s android:name attribute has value
.MyListActivity.

		 If you create this chapter’s Android app on your own, you must edit the
app’s AndroidManifest.xml file and type this code by hand. As the
android:name attribute indicates, this element applies to the app’s
MyListActivity class (refer to Listing 12-12).

		 The MyListActivity class isn’t the starting point of the app’s execution,
and the user shouldn’t be able to launch this activity from the device’s
Apps screen. So the second activity element doesn’t have the MAIN and
LAUNCHER information that’s in the listing’s first activity element.

		 In fact, I’ve rigged this app so that MyListActivity requires no
intent-filter information, and no information at all between the
activity element’s start and end tags. So, in Listing 12-14, the second
activity element has no start and end tags. Instead, this activity
element has one empty element tag.

	 For more information about start tags, end tags, and empty element tags, see
Chapter 4.

	 If you add an activity’s Java code to an Android application, you must also add
an activity element to the application’s AndroidManifest.xml file.

